Retention of zirconia copings over smooth and airborne-particle-abraded titanium bases with different resin cements

Tomas Linkevicius, DDS, PhD, Audrius Caplikas, DDS, Irma Dumbryte, DDS, Laura Linkeviciene, DDS, PhD, and Olga Svediene, DDS

Zirconium oxide implant abutments can be obtained as 1 piece or cemented onto titanium bases. Cemented zirconia abutments have high strength because of the metal-to-metal interconnection that supports the zirconia. One-piece zirconia abutments are declining in popularity due to clinical complications such as fracture of the engaging part inside the implant and internal wear of the implant-abutment interface. Titanium base abutments have become the preferred treatment choice in today’s implant dentistry.

A reliable bond between the zirconia, cement, and the titanium base is essential for the longevity of the restoration. Typically, the retentive part of the titanium base should be about 4 to 6 mm in height; however, titanium bases with a height of only 3.5 mm are marketed, which may not provide sufficient retention. A

ABSTRACT

Statement of problem. How cement type and the surface treatment of a titanium base affect the retention of zirconia copings on titanium bases is unclear.

Purpose. The purpose of this in vitro study was to evaluate the dislodging forces of zirconium oxide copings cemented on implant-supported titanium bases with different luting agents and to examine the influence of airborne-particle abrasion on titanium surfaces.

Material and methods. Thirty implant laboratory analogs (BioHorizons) were fixed in metal blocks, and 30 prosthetic titanium bases (BioHorizons) were tightened with 35 Ncm of torque. Zirconium oxide copings with a luting-gap size of 30 μm were produced by using the Lava (3M ESPE) technology. The specimens were bonded to the titanium bases with 3 different resin cements (G-CEM LinkAce, RelyX U200, and Ceka Site). The specimens were kept in artificial saliva at 37°C for 24 hours and then subjected to a dynamic loading of 5000 cycles with a mastication simulator (SD Mechatronic) with thermocycling between 5°C and 55°C. The tensile force was measured by using a universal testing machine (Zwick/Roell) at a crosshead speed of 5 mm/min. After the measurement, the cement was cleaned from the titanium bases and zirconia copings. The titanium bases were airborne-particle abraded with 50-μm Al2O3 particles, and the bonding process was repeated. The statistical analysis included descriptive analysis, 2-way ANOVA, the Tukey post hoc, and simple main effect tests (α=.05).

Results. Bond strengths were significantly different according to the cement type used and before and after airborne-particle abrasion (P<.05). The cement retentiveness before airborne-particle abrasion was as follows: G-CEM LinkAce (1338 ±69 N)>RelyX U200 (665 ±36 N)>Ceka Site (469 ±22 N). The differences among all the cement types before airborne-particle abrasion were statistically significant (P<.05). After airborne-particle abrasion, retention decreased in all the groups, and the ranking of the cements’ retentiveness remained the same: G-CEM LinkAce (662 ±65 N)>RelyX U200 (352 ±21 N)>Ceka Site (122 ±17 N). After airborne-particle abrasion, the differences among all the cements remained statistically significant (P<.05). The comparison within the groups before and after airborne-particle abrasion revealed that abrading the titanium bases with 50-μm Al2O3 decreased the bond strength for all the tested cements.

Conclusions. The cement type had a significant influence on the retention of the zirconia copings, and abrading the titanium bases with 50-μm Al2O3 significantly decreased the dislodging force of the coping from the titanium base.
The retention of zirconia copings over titanium bases can be improved by choosing an appropriate type of resin cement. Knowledge of retention values can facilitate cement selection. Airborne-particle abrasion of titanium bases can decrease the retentive strength of zirconia copings.

Regardless of abutment height and geometry, the bond strength between the luting agent and the bonding surfaces is determined by the strength of the chemical bonds, mechanical interlocking, and surface roughness. Airborne-particle abrasion of titanium bases is intended to increase the bond strength through micromechanical bonding. Aluminum oxide (Al₂O₃) is the most commonly used particles for this purpose. However, studies show conflicting results on the effect of airborne-particle abrasion on the bond strength of luting agents to metal substructures, many of them reporting a reduction of retention. The purpose of this study was to evaluate the retention value of zirconium oxide copings bonded to titanium bases with different resin cements and to study the effect of airborne-particle abrasion of titanium bases. The null hypotheses were that neither cement nor airborne-particle abrasion of the titanium base would influence the retention of zirconium copings.

MATERIAL AND METHODS

The experiment was carried out in 2 stages. Initially, 30 implant analogs of 4.0 mm in diameter (Tapered Internal; BioHorizons IPH, Inc) were vertically embedded in metal blocks. Thirty prosthetic titanium bases of 5 mm height (Titanium base abutment; BioHorizons IPH, Inc) were placed in each implant analog and tightened to 35 Ncm. Thirty zirconium oxide copings (Lava Classic; 3M ESPE Dental Products) were designed and milled using the Lava technology (3M ESPE Dental Products). The copings were sintered at 1500°C for 8.5 hours. The zirconium oxide copings were evaluated for accuracy using a silicone-disclosing medium (Fit Checker; GC Co) and fitted to the titanium bases. All misfit implants were corrected by grinding the intaglio surface of the coping until a satisfactory fit was reached. Marginal accuracy was inspected under a microscope (ZEISS EyeMag Pro; ZEISS) at ×3.2 magnification.

The bonding surfaces of all the copings were cleaned using 96% isopropyl alcohol. All the specimens with a luting-gap size of 30 μm were bonded to the titanium bases (Fig. 1) by using 3 different resin cements: G-CEM LinkAce (GC Co); RelyX U200 (3M ESPE Dental Products); and Ceka Site (CEKA PRECI-LINE) (Table 1). All the cements were dispensed from syringes with auto-mixing tubes onto the intaglio surface of the zirconia copings and equally distributed on all the walls using a brush. The copings were then gently pressed on the titanium bases until complete seating was ensured. Excess cement was brushed off, and each surface for G-CEM LinkAce (GC Co) and RelyX U200 (3M ESPE Dental Products) was light polymerized for 20 seconds. No light polymerization was carried out for Ceka Site (CEKA PRECI-LINE) as this cement is autopolymerizing. After light polymerization, the copings were autopolymerized for an additional 4 minutes.

The implant analog-abutment-coping assemblies were stored in physiological saline solution at 37°C for 24 hours, after which the specimens were dynamically loaded for 5000 cycles in a mastication simulator.
The tensile dislodging force was measured in Newtons using a universal testing machine (Z2.5; Zwick/Roell) at a crosshead speed of 5 mm/min (Fig. 2).

Subsequently, the cement was cleaned from the titanium bases and zirconia copings. Visual inspection of the debonded specimens showed that most of the cement remnants had adhered to the surface of the titanium bases. The intaglio surfaces of the zirconia copings were cleaned of cement remnants with a sharp explorer, steam cleaned, and cleaned using 96% isopropanol alcohol. The cement from the titanium bases was eliminated by airborne-particle abrasion using 50-μm Al2O3 (Aluminium oxide, Eisenbacher Dentalwaren; ED GmbH) at 0.2-MPa pressure perpendicular to each surface from a distance of 10 mm for 10 seconds (Fig. 3), and the sequence of the initial stage of the experiment was repeated.

The statistical analysis included descriptive analysis, a 2-way ANOVA to examine the effect of the cement and airborne-particle abrasion on the retention strength, the Tukey post hoc test, and simple main effect tests. The tests were performed using a statistical software program (IBM SPSS Statistics v22; IBM Corp) (α=.05).

RESULTS

The mean retentive values and standard deviations before and after airborne-particle abrasion of titanium bases are presented in Table 2. A statistically significant interaction was found between the effects of the cement and the airborne-particle abrasion on the retention (P<.05). The Tukey post hoc test revealed significant differences in the retention strength among the different cement types before and after the airborne-particle abrasion (P<.05). However, the simple main effect analysis showed that G-CEM LinkAce (GC Co) lost significantly more retention strength after airborne-particle abrasion than the other types of cement (P<.05) (Fig. 4).

DISCUSSION

The results of the study support the rejection of the null hypothesis that different types of cement do not influence the retention of zirconia copings over titanium bases. The type of resin cement altered the retentive strength of zirconia copings bonded to both intact and airborne-particle-abraded titanium bases (P<.05). In the past, standard stock abutments of various heights were used in this kind of study. Titanium bases represent different conditions compared with stock prosthetic...
important. Carnaggio et al18 reported that adhesive resin retention provided by the cement becomes even more sive manufacturer (CAD-CAM) restorations have more pas-

Table 2. Descriptive statistics (mean ± standard deviation) of dislodging forces (N) before and after airborne-particle abrasion of titanium bases

<table>
<thead>
<tr>
<th>Luting Agent</th>
<th>Nonabraded Titanium Bases</th>
<th>Airborne-Particle-Abraded Titanium Bases</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-CEM LinkAce (GC Co)</td>
<td>1338 ±69</td>
<td>662 ±65</td>
</tr>
<tr>
<td>RelyX U200 (3M ESPE Dental Products)</td>
<td>665 ±36</td>
<td>352 ±21</td>
</tr>
<tr>
<td>Ceka Site (CEKA PRECI-LINE)</td>
<td>467 ±22</td>
<td>122 ±17</td>
</tr>
</tbody>
</table>

Figure 4. G-CEM LinkAce (GC Co) lost significantly more retention strength after airborne-particle abrasion than the other types of cement (P<0.05). CI, confidence interval.

abutments because titanium bases typically have me-chanical interlocking and less taper; therefore, this situ-

The retentive strength of different cements such as glass-ionomer, resin-modified glass-ionomer, resin ce-

ment composition.14 This result is consis-

tent with that of the present study, as the highest dislodgement forces were achieved with G-CEM LinkAce (GC Co), followed by RelyX U200 (3M ESPE Dental Products) resin cement. The manufacturers report that G-CEM LinkAce (GC Co) contains special ester phos-

phosphoric acid groups.14 When different phosphate monomers such as 6-methacryloxyhexyl dihydrogen phosphate, 10-methacryloxydecyl dihydrogen phos-

phate, or other monomers contact zirconia, the hydrogen group of monomer and the oxygen group of zirconia slowly produce water molecules and form a stable co-

valent bond.15,24 The length of the \(-\text{(CH}_2\text{n}\) chain de-

termines the ability of different phosphoric monomers to enhance bonding.25 Differences in composition may be why G-CEM LinkAce (GC Co) cement demonstrated higher retention than RelyX U200 (3M ESPE Dental Products). In a recent study of Lee et al,26 self-adhesive resin cements were investigated, and G-CEM LinkAce (GC Co) showed greater shear bond strength than RelyX U200 (3M ESPE Dental Products).

Nejatidanesh et al19,27 studied the impact of titanium abutment height on the retention of implant-supported zirconia restorations. They reported the following retentive values: 203.49 N for 5.5-mm abutments and 230.37 N for 3-mm-tall abutments. This is considerably lower than the results obtained in the present study. For example, G-CEM LinkAce (GC Co) cement reached 1338 N before airborne-particle abrasion and 662 N after the airborne-particle abrasion of the titanium bases. These differences can be explained by the fact that Nejatidanesh et al19,27 used traditional titanium abutments for crown cementation, whereas titanium bases with an additional mechanical interlocking were used in the present study.

Only a few studies have focused on the retention of zirconia copings over titanium bases.28,29 Gehrke et al28 reported the mean retentive strength to be from 650.77 ±74.92 to 924.93 ±3.31 N for different resin cements. These values are also considerably higher than the retention of zirconia copings on prosthetic abutments, which demonstrates that titanium bases offer substan-

tially improved retention of zirconia suprastructures. von Maltzahn et al29 investigated the retention of zirconia copings on airborne-particle-abraded titanium bases using 2 different resin cements and reported the mean values to be from 223.3 ±67.6 N to 598.6 ±173.7 N. These values are consistent with those of the present study, which showed lower retention values on airborne-particle-abraded titanium bases than those on new tita-

nium bases.

As the present study showed statistically significant differences between the mechanical surface treatments of titanium bases, the null hypothesis stating that airborne-particle abrasion of titanium bases does not improve
retention of zirconia copings was rejected. However, airborne-particle abrasion with 50-μm Al₂O₃ particles did not improve but significantly reduced the retention of zirconia copings with all the tested luting agents (P<.05).

When a material is abraded with airborne particles, it is affected by particles of different grain sizes. In general, airborne-particle abrasion increases the surface area and creates higher surface roughness. The cement can optimally wet the larger interface, resulting in better mechanical retention of the restoration. Different results regarding the effect of airborne-particle abrasion have been reported. Some studies have reported that rough airborne-particle-abraded titanium copings provided greater micromechanical retention than the smooth machined titanium abutment surface. In contrast, the present study produced evidence for a decrease in the retentive strength of zirconia copings on airborne-particle-abraded titanium bases. This is an unexpected finding because logically an increased surface would lead to increased retention strength. However, the results of the present study agree with the findings of Nejatidanesh et al, who concluded that airborne-particle abrasion did not improve the retention of base metal alloy copings over titanium abutments. Different explanations can be provided to clarify the outcome of the study. After airborne-particle abrasion, some of the particles of the abrasion material can stay inside the metal and reduce the bonding between the titanium base and the zirconia coping.

Papadopoulos et al reported the presence of loose alumina on the titanium porcelain interface, which is attributed mainly to the airborne-particle abrasion procedure. The analysis of the microstructure and roughness of the cast, commercially pure titanium surface showed that alumina particles were embedded in the surface layer of titanium regardless of the particle size of the 3 different alumina powders. The use of large particle alumina seemed advantageous in reducing the alumina remaining on the titanium surface while also increasing the surface roughness. Papadopoulos et al further discussed how loose alumina particles remained on the surface layer of metal and weakened the bonding strength between titanium and porcelain and how those loose particles could not be removed even by ultrasonic cleaning. Swartz et al also reported the absence of an increase in retention when implant-supported prostheses were cemented with resin-modified glass ionomer after airborne-particle abrasion.

Another possible reason could be the change in the microgeometry of the titanium base and the cement gap. After abrasion, the retentive grooves present on a titanium base may be dulled and the cement space increased, which in turn might reduce the dislodging force. The manufacturers of the Ceka Site (CEKA PRECI-LINE) cement recommend airborne-particle abrasion of the bonding surfaces before cement application. This can be explained by the fact that a primary indication for the use of this cement is the bonding of metal precision attachments for removable partial dentures. The statistical analysis showed that the G-Cem LinkAce (GC Co) dislodgment force was further reduced compared with that of the other tested cements. This cement may be more sensitive to the status of the titanium base than other bonding agents. Despite the drop in retention strength, how much retentiveness is needed for a crown to be retentive on the titanium base is still not clear; even with reduced strength, zirconia copings may be able to withstand occlusal forces without decementation.

A limitation of this study was that the same zirconia copings and titanium bases were used in both stages of the experiment. Dislodging of the copings and airborne-particle abrasion could influence the changes in the bonding surfaces and lead to a lower retention force. Perhaps some flaws might have been introduced into the zirconia during the first part of the experiment, leading to the presented results. However, the present study is not the first to report that airborne-particle abrasion can give opposite results to those expected.

Future experiments should focus on assessing the retention strength of newly introduced cements. In addition, clinical studies are needed to determine whether the results of the present in vitro experiments are clinically valid.

CONCLUSIONS

Within the limitations of this in vitro study, the following conclusions were drawn:

1. The brand of resin cement significantly increased the retention of the zirconia coping over smooth and airborne-particle-abraded titanium bases.
2. Airborne-particle abrasion of titanium bases decreased the retentive strength of zirconia copings cemented with a resin luting agent.

REFERENCES

Corresponding author:
Prof Tomas Linkevicius
Institute of Odontology
Faculty of Medicine
Vilnius University
Zalgirio str. 119/117
LT-08217, Vilnius
LITHUANIA
Email: linktomo@gmail.com

Acknowledgments
The authors would like to thank BioHorizons IPH, Birmingham, USA, for supporting this study with titanium base abutments.